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Dimensionality reduction & PCA

We'll start with a simple and fundamental unsupervised learning problem: dimensionality reduction.
Goal: reduce the dimensionality of a dataset so that

® tis easier to visualize and discover patterns
e it takes less time and space to process for any downstream application (classification, regression, etc)
e noiseis reduced

There are many approaches, we focus on a linear method: Principal Component Analysis (PCA).
Consider the following dataset:

17 features, each represents the average consumption of some food; 4 data points, each represents some
country.

What can you tell? Hard to say anything looking at all these 17 features.



England N Ireland Scotland Wales
Alcoholic drinks N 375 | 135 48[ 475
Beverages | 57 47 | 53 | 73
Carcase meat [] 245 | 267 | 242 | 227
Cereals S 72 e ez _
Cheese 105 | 66 |
Confectionery 41 |
Fats and oils 209 ||
Fish
Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars

PCA can help us! The projection of the data onto its first principal component:
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i.e. we reduce the dimensionality from 17 to just 1.
Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on the island of Great Britain out of the 4
samples.

Can also interpret components: PC1 tells us that the Northern Irish eat more grams of fresh potatoes and
fewer of fresh fruits and alcoholic drinks.

We can find the second (and more) principal components of the data too:
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And the components themselves are interpretable too:
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High-level goal
Suppose we have a dataset of n datapoints 1, -+, T, € R%. (In previouse.g.,n =4,d = 17)
The high level goal of PCA is to find a set of k principal components (PCs) /principal vectors vy, - -+, v € R4

such that for each x;
k
T; ~ E QiU
J=1

for some coefficients a;; € R.

x; is like the food consumption for some countries, v; is the principal food consumption vectors.
PCA explains the data as different linear combination of some pricinpal components.

e Before we apply PCA, we usually preprocess the data to center it:



Letz = %Z?lei,thensetzii =x; — .
Assume data is centered (Z x; =0)

® In many applications, it is also important to scale each coordinate properly. This is especially true if the
coordinates are in different units or scales.

Forall j € [d], divide j-th coordinate of each point by /> x?j

Objective function for PCA

Key difference from supervised learning problems: No labels given, which means no ground-truth to measure
the quality of the answer!

However, we can still write an optimization problem based on our high-level goal.
For clarity, we first discuss the special case of k = 1.

Optimization problem for finding the 1% principal component v :

n

v] = arg min ((distance between x; and line spanned by v)?)
-1

o] =1 4

(xi’ W)

0

Figure 4: The geometry of the inner product with a unit length vector, w.

(dist(z; > line spanned by v))*+ < x;,v >2= ||z |3
||z;]|2 is a constant, independent of choice of v .

.".original objective is equivalent to:
n

V1 = arg max E <:/z:i,v>2

vi||v||2=1 Pt

An example:



“bad” line

“good” line

Figure 5: For the good line, the projection of the points onto the line keeps the two clusters
separated, while the projection onto the bad line merges the two clusters.

Objective function for larger values of k.

The generalization of the original formulation for general k is to find a k-dimensional subspace S such that the
points are as close to it as possible:

n

S = arg min Z(distance between z; and subspace S)*

k—dim subspaces S P

By the same reasoning as for k = 1, this is equivalent to,

n

S = arg max Z(length of xis projection on 8)* - - (1)

k—dim subspaces S i—1

It is useful to think of the subspace S as the span of k orthonormal vectors vy, - - -, v, € R?.
Recall vectors vy - - -, vy, are orthonormal to:

1. [Jvs]| = 15 € [K]

2. <0,V >= 0Vi+#j

e.g. : standard basis vectors e; = (1,0,---,0),e5 = (0,1,---,0)
. . d: . . . R .

Def: Span of a collection vy, - - -, v, € R%is all the linear combinations {d ;"1 Ajvj : A1, -+, Ar € R},
Example,

e k =1,spanisline through the origin.
e k= 2,ifvq, vy arelinearly independent, the span is a plane through the origin, and so on.

Fact about orthonormal vectors:



length of z}s projection on (span(vi,---.v.))? = Z < @i >E e (2)
j=1
Combining (1), (2) , we get Formal problem solved by PCA:
Given i, -, x, € R%and a parameter k > 1, compute orthonormal vectors vy, -+, v, € R% to maximize:
n k
33 <y >
i=1 j=1

Equivalent view:

® Pick v1 to be the variance maximizing direction.
® Pick v2 to be the variance maximizing direction, orthogonal to vy .
® Pick v3 to be the variance maximizing direction, orthogonal to v; and vy, and so on.

Using PCA for data compression and visualization
Input: n datapoints &1, o, -+, T, € R?, components k we want.
Step1: Perform PCA to get top k principal components vy, - -+, v € R<.

Step2: For each datapoint x; , define its "v;-coordinate” as "< x;, v; >", its "vy-coordinate" as "< x;, vy >".
Therefore we associate k coordinates to each datapoint x; , where the j-th coordinate denotes the extent to
which z; points in the direction of v; .

Step3: We now have a new "compressed" dataset where each datapoint is k-dimensional. For visualization, we
can plot the point z; in R* as the point (< @;,v1 >, < i, U9 >, -+, < Tj, U >).

Going back to high-level goal:

k
xT; = E < ZjVj > vj
J=1

Visualization example: Dataset: genomes of 1387 Europeans (each individual's genotype at 200,000 locations
in the genome) , n = 1387, d ~ 200000

Project the datapoints onto top 2 PCs.

Plot shown below; looks remarkably like the map of Europe!



From paper: “"Genes mirror geography within Europe” Novembre et al., Nature’08

Compression example: Dataset: 256 X 256 ( ~ 65 K pixels) dimensional images of about 2500 faces, all
framed similarly, n = 2500, d ~ 65000 .

We can represent each image with high accuracy using only 100 — 150 principal components!

The principal components (called eigen-faces here) are themselves interpretable too!

Figure 2. Seven of the eigenfaces calculated from the input images
of Figure 1.

Solving the PCA optimization problem

Considerk =1

n
V] = arg max E < x;v >2
=1

vi||v||2=1 4



S
s.foranyv € R9,
TV = e R"
n
Y <z >t = |zl
i—1
— (av)"(20)
= vl 2T zv

o for A =zTz ¢ RIxd

v = arg max vl Av

vi||v|]2=1
Tz : covariance matrix of data (assuming data is centered)
| a ]
| i
A= |z T,
| I I S
| |

Ay =>1, x?l — variance of 1st cordante.
Ay =37 ®i1x;2 — covariance between 1st and 2nd coordinate.

1.The Diagonal Case

Let's solve arg max;||y||,=1 vT Av for the special case where A = zlzisa diagonal matrix.
AM 0 -+ 0
0 X --- 0
A= - where A1 = -+ > X3 >0
0 0 - Mg

Any d x d matrix A can be thought of as a function that maps points in R¢ back to points in R% : v — Awv.



The matrix ((2) (1)) maps (z,y) to (2z, y):

Points on circle {(z,y) : 2 + y? = 1} are mapped to the ellipse {(z,y) : (%)2 +y? =1}

So what direction v should maximize vT Awv for diagonal A ?
Claim: It should be the direction of maximum stretch:

SinceA\; > --- > Agq,

v = e1(where e; = (1,0,---,0)) is 1* standard basis vector
Proof:
A1v1 d
’UTA’U = ’UT(A'U) — ('Ul, Tty Ud) : - Z ,U’Lz)\l
i—1
)\dvd

. . . d
Since v is a unit vectors, Y5, v =1
..since A is largest, tomaxsetvy = 1,v;, = 0Vi >0 — ¥ = e3
2.Diagonals in Disguise

Consider
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Q is a rotate matrix, rotate back by 45° , D is a stretch matrix, Q7 is a rotate matrix, rotate clockwise by 45° .

The previous figure, rotated 45 degrees.

How do we formalize the concept of a rotation in high dimensions as a matrix operation?
Answer: Orthogonal matrix (also called orthogonal matrix).
An orthogonal matrix is a matrix @ s.t. for all columns Q1,---, Qg4
1Qill3 =1, ¥4
QiQ;=0,Vi#j

Key properties:

e QTQ=1 (Q'=Q"
- —Qf —— | | 1
__ég__ | | 1

o [|Qull3 =[vI3

1Qu]3 = v" Q" Qu=1v"v

e If Q) is orthogonal, QT is also orthogonal.



QQ=I-0Q'QA=Q—-(QQNQ=Q—-QQ" =1
Recall that we want to find v; = arg max.y||,-1 vl Av.

Now consider A that can be written as A = QDQT for an orthogonal matrix @ and diagonal matrix D with
diagonal entries A\ > --- > X g > 0.

§Q|‘——\

e

<
O’ &e'

_Qd'f_

Q T

Q wil\ e'»\b ¢ otat, y 50 l.bvu,\} W ”’”‘*:“;36’“‘&\1 9

Q will only rotate, so doesn't effect maximization.
What is the direction which gets stretched the maximum?

(Informal answer) The maximum possible stretch by D is A1 . The direction of maximum stretch under D is e;.
Therefore, direction of maximum stretch under DQT isvs.t. QTv =e; = v = (QT) le; = Qe; .

Claim: for A = QDQT , arg MaX | [y]|,=1 v Av = Qe
Proof: for v; = Qey

v] Avy = (Qe1)"(Qe1) = 1 QTQDQT Qey

= G{Del = )\1

I (E1]

0 S

Now for v1 Av =

== [

Q, QT preserve length. .. QTv(vT Q) as unit vectors.

S QTAQ < A ... v1 = Qe; maximizes vT Av.



3.General Covariance Matrices
Consider any covariance A = zTz

Linear algebra fact: any symmetric matrix A can be written as A = QDQ7 for orthogonal matrix @ and
diagonal matrix D .

fA=zaTz,6 Ais symmetric and D always has non-negative entries, why?
v Av = v el zv = ||zv||3 > 0
If Dy < 0, thenforv = Qe;, vTQDQTv < 0.

When k = 1, the solution to arg max,,jy(,,—1 v_ Av is the first column of Q , where A = z7z = QDQT with
Q orthogonal and D diagonal with sorted entries.

General values of k
What is the solution to the PCA objective for general values of k ?
n k
D) DRERIEL
i=1 j=1

Solution: Pick the first k columns of @ , where the covariance 27z = QDQT with Q orthogonal and D
diagonal with sorted entries.

Since @ is orthogonal, the first k£ columns of () are orthogonal vectors. These are called the top k principal
components (PCs).

Eigenvalues & Eigenvectors
How to compute the top k columns of Q) in the decomposition 27z = QDQT ?
Solution: Eigenvalue decomposition!

Def: An eigenvectors of matrix A is a vector v that is stretched in the same direction as by A , i.e. Av = Av For
some A € R,

A is the eigenvalue.

e FEigenvectors: axes of stretch in geometric intuition
e FEigenvalues: stretch factors

When we write A = 2Tz as A = QDQT

e Rows of QT (columns of Q) are eigenvectors of A .
e Diagonal entries of D are corresponding eigenvalues.



Proof: i-th column of D is given by Qe; 'l" o',‘_ 0'/ ' f)‘ ’>
(« )

A(Qe;) = QDQ"Qe; = QDe; = QAie; = Xi(Qe;)
.". t-th column of @ is eigenvector of A with eigenvalue \;

PCA boils down to computing the k eigenvectors of the covariance matrix 'z that have the largest
eigenvalues.

Another Approach

for A =xTx € R&9:

v1 = arg max E < 3,0 >3

vi[|v]|2=1

= arg max v Av
vilfvl]2=1

The Rayleigh quotient of the square A and the non-0 vector v is defined as below:

vT Av

R(A,z) = —

vTv

For any non-0 real number k with R(A, kv) = R(A,v), it is shown that the Rayleigh quotient is invariant after
vector scaling and there is redundancy. SUppose Amin, Amaz are the minimum and maximum eigenvalues of
the matrix 4, then we have:

>\min < R(A, 'U) < )‘maa:
When v are the eigenvectors corresponding to the minimum and maximum eigenvalues, respectively, R(A, v)
takes these two values.

Thus, by using the Lagrange multiplier method, we construct the Lagrange multiplier function, A is a constant:
L(v,\) = vT Av + A(vTv — 1)

To maximize the function, we find the gradient of v and letitbe 0 : 2Av 4+ 2 v = 0 — Av = Av . This means
that all extreme values of the Rayleigh quotient are obtained at the eigenvalues and eigenvectors of the matrix
A . Plug A;, z; in Rayleigh quotient, we can prove that:
T T
v; (Av; v (Ajv;
R(A,v;) = (v = ) = A

(N Uz’ V;

Therefore, the Rayleigh quotient has a maximum value at the largest eigenvalue and a minimum value at the
smallest eigenvalue.



According to the derivation of Rayleigh's quotient theorem above, when v; satisfies:
A’01 = /\max(A)'Ul
arg maxX,|y|[,—1 vT Av takes the maximum value, i.e., for v; , ¥the Rayleigh quotient:

T
v Avy

T
’Ul V1

— )\maX(A)

Thus, if k > 1, v can be solved by Av = Av, where ); is the corresponding eigenvalue of PCs v; .

Solving for the eigenvalues and eigenvectors of A can be done by using the SV D singular value
decomposition.

Conclusion
How many PCs to use?
For visualization, we usually choose k to be small and just pick the first few principal components.

In other applications such as compression, it is a good idea to plot the eigenvalues and see. A lot of data is
close to being low rank, so the eigenvalues may decay and become small.

We can also choose the threshold based on how much variance we want to capture. Suppose we want to
capture 90% of the variance in the data. Then we can pick k such that i.e.

k
Zj:l /\j

d
j=1 Aj

> 90%

Where A1 > --- > )\g4 are sorted eigenvalues.

Note: Z;-lzl Aj = trace(:vTx), so no need to actually find all eigenvalues.

When and why does PCA fail?

1. Data is not properly scaled/normalized.

2. Non-orthogonal structure in data: PCs are forced to be orthogonal, and there may not be too many
orthogonal components in the data which are all interpretable.

3. Non-linear structure in data.
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