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Dimensionality reduction & PCA  

We’ll start with a simple and fundamental unsupervised learning problem: dimensionality reduction.

Goal: reduce the dimensionality of a dataset so that

it is easier to visualize and discover patterns
it takes less time and space to process for any downstream application (classification, regression, etc)
noise is reduced

There are many approaches, we focus on a linear method: Principal Component Analysis (PCA).

Consider the following dataset:

 features, each represents the average consumption of some food;  data points, each represents some 
country.

What can you tell? Hard to say anything looking at all these  features.



PCA can help us! The projection of the data onto its first principal component:

i.e. we reduce the dimensionality from  to just  .

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on the island of Great Britain out of the  
samples.

Can also interpret components:  tells us that the Northern Irish eat more grams of fresh potatoes and 
fewer of fresh fruits and alcoholic drinks.

We can find the second (and more) principal components of the data too:



And the components themselves are interpretable too:

High-level goal  

Suppose we have a dataset of  datapoints . (In previous e.g. , )

The high level goal of PCA is to find a set of  principal components (PCs) /principal vectors  
such that for each 

for some coefficients  .

 is like the food consumption for some countries,  is the principal food consumption vectors.

PCA explains the data as different linear combination of some pricinpal components.

Before we apply PCA, we usually preprocess the data to center it:



Let  , then set  .

Assume data is centered ( )

In many applications, it is also important to scale each coordinate properly. This is especially true if the 
coordinates are in different units or scales.

For all , divide -th coordinate of each point by 

Objective function for PCA  

Key difference from supervised learning problems: No labels given, which means no ground-truth to measure 
the quality of the answer!

However, we can still write an optimization problem based on our high-level goal.

For clarity, we first discuss the special case of  .

Optimization problem for finding the  principal component  :

 is a constant, independent of choice of  .  

 original objective is equivalent to:

An example:



Objective function for larger values of  

The generalization of the original formulation for general  is to find a -dimensional subspace S such that the 
points are as close to it as possible:

By the same reasoning as for , this is equivalent to,

It is useful to think of the subspace  as the span of  orthonormal vectors  .

Recall vectors  are orthonormal to: 

1. 

2. 

e.g. : standard basis vectors 

Def: Span of a collection  is all the linear combinations  .

Example,

 , span is line through the origin.
 , if  are linearly independent, the span is a plane through the origin, and so on.

Fact about orthonormal vectors: 



Combining  , we get Formal problem solved by PCA:

Given  and a parameter , compute orthonormal vectors  to maximize:

Equivalent view:

Pick  to be the variance maximizing direction.
Pick  to be the variance maximizing direction, orthogonal to  .
Pick  to be the variance maximizing direction, orthogonal to  and  , and so on.

Using PCA for data compression and visualization  

Input:  datapoints  , components  we want.

Step1: Perform PCA to get top  principal components  .

Step2: For each datapoint  , define its " -coordinate” as " ", its " -coordinate" as " ". 
Therefore we associate  coordinates to each datapoint  , where the -th coordinate denotes the extent to 
which  points in the direction of  .

Step3: We now have a new "compressed" dataset where each datapoint is -dimensional. For visualization, we 
can plot the point  in  as the point  .

Going back to high-level goal:

Visualization example: Dataset: genomes of  Europeans (each individual’s genotype at 200,000 locations 
in the genome) , 

Project the datapoints onto top  PCs.

Plot shown below; looks remarkably like the map of Europe!



Compression example: Dataset:  (  K pixels) dimensional images of about  faces, all 
framed similarly,  .

We can represent each image with high accuracy using only  principal components!

The principal components (called eigen-faces here) are themselves interpretable too!

Solving the PCA optimization problem  

Consider 



 for any  , 

 for 

 : covariance matrix of data (assuming data is centered)

 variance of st cordante.

 covariance between st and nd coordinate.

1.The Diagonal Case  

Let’s solve  for the special case where  is a diagonal matrix.

Any  matrix  can be thought of as a function that maps points in  back to points in  :  .



So what direction  should maximize  for diagonal  ?

Claim: It should be the direction of maximum stretch:

Since  , 

Proof:

Since  is a unit vectors, 

 since  is largest, to max set 

2.Diagonals in Disguise  

Consider



 is a rotate matrix, rotate back by  ,  is a stretch matrix,  is a rotate matrix, rotate clockwise by  .

How do we formalize the concept of a rotation in high dimensions as a matrix operation?

Answer: Orthogonal matrix (also called orthogonal matrix).

An orthogonal matrix is a matrix  s.t. for all columns 

Key properties:

If  is orthogonal,  is also orthogonal.



Recall that we want to find  .

Now consider  that can be written as  for an orthogonal matrix  and diagonal matrix  with 
diagonal entries  .

 will only rotate, so doesn't effect maximization.

What is the direction which gets stretched the maximum?

(Informal answer) The maximum possible stretch by  is  . The direction of maximum stretch under  is . 
Therefore, direction of maximum stretch under  is  s.t.  .

Claim: for  , 

Proof: for 

Now for 

 preserve length.  as unit vectors.

 .  maximizes  .



3.General Covariance Matrices  

Consider any covariance 

Linear algebra fact: any symmetric matrix  can be written as  for orthogonal matrix  and 
diagonal matrix  .

If  ,  is symmetric and  always has non-negative entries, why?

If  , then for  ,  .

When  , the solution to   is the first column of  , where  with 
 orthogonal and  diagonal with sorted entries.

General values of  

What is the solution to the PCA objective for general values of  ?

Solution: Pick the first  columns of  , where the covariance  with  orthogonal and  
diagonal with sorted entries.

Since  is orthogonal, the first  columns of  are orthogonal vectors. These are called the top  principal 
components (PCs).

Eigenvalues & Eigenvectors  

How to compute the top  columns of  in the decomposition  ?

Solution: Eigenvalue decomposition!

Def: An eigenvectors of matrix  is a vector  that is stretched in the same direction as by  , i.e.  For 
some  .

 is the eigenvalue.

Eigenvectors: axes of stretch in geometric intuition
Eigenvalues: stretch factors

When we write  as 

Rows of  (columns of  ) are eigenvectors of  .
Diagonal entries of  are corresponding eigenvalues.



Proof: -th column of  is given by  

 -th column of  is eigenvector of  with eigenvalue 

PCA boils down to computing the  eigenvectors of the covariance matrix  that have the largest 
eigenvalues.

Another Approach  

for  :

The Rayleigh quotient of the square  and the non-  vector  is defined as below:

For any non-  real number  with , it is shown that the Rayleigh quotient is invariant after 
vector scaling and there is redundancy. Suppose  are the minimum and maximum eigenvalues of 
the matrix , then we have：

When  are the eigenvectors corresponding to the minimum and maximum eigenvalues, respectively,  
takes these two values.

Thus, by using the Lagrange multiplier method, we construct the Lagrange multiplier function,  is a constant:

To maximize the function, we find the gradient of  and let it be  ：  . This means 
that all extreme values of the Rayleigh quotient are obtained at the eigenvalues and eigenvectors of the matrix 

 . Plug  in Rayleigh quotient, we can prove that:

Therefore, the Rayleigh quotient has a maximum value at the largest eigenvalue and a minimum value at the 
smallest eigenvalue.



According to the derivation of Rayleigh's quotient theorem above, when  satisfies:

 takes the maximum value, i.e., for  , 洋the Rayleigh quotient:

Thus, if  ,  can be solved by  , where  is the corresponding eigenvalue of PCs  .

Solving for the eigenvalues and eigenvectors of  can be done by using the  singular value 
decomposition.

Conclusion  

How many PCs to use?

For visualization, we usually choose  to be small and just pick the first few principal components.

In other applications such as compression, it is a good idea to plot the eigenvalues and see. A lot of data is 
close to being low rank, so the eigenvalues may decay and become small.

We can also choose the threshold based on how much variance we want to capture. Suppose we want to 
capture 90% of the variance in the data. Then we can pick k such that i.e.

Where  are sorted eigenvalues.

Note: , so no need to actually find all eigenvalues.

When and why does PCA fail?

1. Data is not properly scaled/normalized.
2. Non-orthogonal structure in data: PCs are forced to be orthogonal, and there may not be too many 

orthogonal components in the data which are all interpretable.
3. Non-linear structure in data.
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